The 10th TSME International Conference on Mechanical Engineering 10th – 13rd December 2019 Pattaya, Thailand

Influence of Soot Contamination in API CI-4 Engine Oil on Four-ball Metallic Wear using Electron Microscopy Image Analysis

Pitchaporn Oungpakornkaew^{1,*}, Panyakorn Rungsritanapaisan¹, Preechar Karin¹, Ruangdaj Tongsri², Dhritti Tanprayoon² and Katsunori Hanamura³

¹Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

²National Metal and Materials Technology Center, Pathumthani 12120, Thailand ³Departments of Mechanical Engineering, Tokyo institute of technology 179-0085, Japan

* Email: pitchaporn.oung@gmail.com

Abstract. Engine lubricant has an important role to decrease friction and wear of moving parts in the engine. However, Soot contaminated in engine oil could change chemical and physical properties that affect the lubricant oil operation. Soot particles were simulated using carbon black in order to eliminate the effect of metallic ash and unburned hydrocarbon which contained in particulate matter. The carbon black was blended in CI-4 lubricating oil. Investigation of metallic wear was done by a four-ball wear test. The amount of wear was compared by measuring the wear scar diameter of the worn surface on the steel balls. Scanning electron microscope (SEM) and confocal laser scanning microscopy were used for characterizing wear scar and surface roughness, respectively. In addition, the evidence of lubricant additive elements was detected on the wear surface by Energy Dispersive X-ray analysis (EDX). This research found that engine oil with soot contamination could lead to increases amount of abrasive wear by 83% and has approximately 1.1 % larger wear scar diameter.

Keywords: Engine Lubricant, Soot, Wear Mechanism